HEALTH NEWS

Study Title:

Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F1 generation rats.

Study Abstract

Methyl mercury is a teratogenic and neurodevelopmental toxicant in the environment. MeHg affects several biological pathways critical for brain development. The present study validated the effect of Fisetin on developmental MeHg exposure induced alterations in mitochondrial apoptotic pathway and Rho GTPase mRNA expressions in hippocampus of F1 generation rats. Pregnant Wistar rats were grouped as Group I : administered with vehicle control, Group II: MeHg (1.5 mg/kg b.w), Group III: MeHg + Fisetin (10 mg/kg b.w), Group IV: MeHg + Fisetin (30 mg/kg b.w), Group V: MeHg + Fisetin (50 mg/kg b.w), Group VI: MeHg + Fisetin (70 mg/kg b.w), Group VII: Fisetin (30 mg/kg b.w) alone. Fisetin reduced mercury accumulation in offspring brain. In hippocampus, Fisetin preserved mitochondrial total thiol status, glutathione antioxidant system, mitochondrial metabolic integrity and respiratory chain activity. Fisetin ameliorated apoptotic signals by preventing Cytochrome c release, down regulating ERK 1/2 and Caspase 3 gene expression. Fisetin also upregulated mRNA expressions of RhoA/Rac1/Cdc42 in hippocampus. Predominant effect of Fisetin was to reduce mercury accumulation in offspring brain there by diminishing the toxic effect of MeHg. Hence we showed that, gestational intake of Fisetin (30 mg/kg b.w.) impedes developmental MeHg neurotoxicity by regulating mitochondrial apoptotic and Rho GTPase signalling molecules and by reducing the mercury accumulation in hippocampus of F1 generation rats.

Copyright © 2018 ISDN. Published by Elsevier Ltd. All rights reserved.
KEYWORDS:

Caspase3; ERK ½; F(1) generation; Fisetin; Methyl mercury; Mitochondria; Rho GTPase

Study Information

Int J Dev Neurosci. 2018 Oct;69:88-96. doi: 10.1016/j.ijdevneu.2018.07.002. Epub 2018 Jul 20.

Full Study

https://www.ncbi.nlm.nih.gov/pubmed/30009881